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1 Introduction

I am Manu Navjeevan, a second year PhD student in the Economics department. My
research interests are in Econometrics and Industrial Organization. I will be your TA this
quarter.

If you have questions you can email me at mnavjeevan@g.ucla.edu or come to office
hours which are (tentatively) on Tuesdays and Thursdays from 11am - 12pm (Noon) in the
Alper Room.

2 Linear Regression

We have all probably encountered linear regression in the past or at least have some idea
of what linear regression is. The goal of this course will be to formalize this intuition and
gain a better sense of what exactly linear regression is. Along the way we will expose both
the strengths and drawbacks of linear regression.

To begin, suppose we have an explanatory variable X and a dependent variable Y . For
example, let X be age and Y be earnings.1 The data on age vs. earnings can be plotted in
a scatter plot which could look like the one below in Figure 1. A linear regression model
relates the explanatory variable X to the dependent variable Y by the formula below. For
a number of reasons (prediction, etc.) we may be interested in estimating this model.

Yi = α+Xi · β + εi

εi
i.i.d∼ (0, σ2)

0 = E[εi|Xi]

The subscript i denotes a member of the population. Here εi
i.i.d∼ (0, σ2) simply means

that the errors are independently and identically distributed with mean 0 and constant

1In general X can have multiple dimensions; e.j X could contain both age and education. For the
expository purpose of this example, we will only consider a unidimensional X
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Figure 1: Scatter plot of age against earnings. We may be interested in the linear relation-
ship between age and earnings.

variance σ2. It is important to note that the the linear regression model specified above
is specified for the whole population. That is it describes the ”true” linear relationship
between X and Y in the population. Since we only have a random and finite sample of
the population, we can only try and estimate α and β. The logical way of doing this is
to find the line of best fit through our data. Heuristically, the best estimate of the linear
relationship between X and Y in the population is the linear relationship (line of best fit)
between X and Y in our data. We now turn to the problem of estimating this line of best
fit

2.1 Estimating the Linear Regression Model

The regression coeffecients are estimated by choosing (α̂, β̂) to minimize the sum of squared
errors between Y and it’s predicted value α̂+ β̂ ·Xi. Formally:

(α̂, β̂) = arg min
a,b

n∑
i=1

(Yi − a−Xi · b)2

This is a bit complicated to solve so thankfully someone has done the math before us
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to get closed form expressions for α̂ and β̂. These expressions are given below. Even more
thankfully, computers now estimate α̂ and β̂ for us.

β̂ =

∑n
i=1(Xi − X̄)(Yi − Ȳ )∑n

i=1(Xi − X̄)2

α̂ = Ȳ − β̂ · X̄

Once we have found α̂ and β̂, we can use them to define a predicted value for Y for
any value of X. We denote this predicted value Ŷ and note that

Ŷ = α̂+ β̂ ·Xi

Using this we can also estimate the residuals of the model (εi), which we will later look
at to see if our linear regression model is a good fit for the data. For now, we will just
define the estimated residuals

ε̂i = Yi − Ŷi
Because α̂ and β̂ are chosen to minimize the squared error between Y and its linear

predictor Ŷ , the line Ŷ = α̂ + β̂ ·X gives us a line of best fit through our data. We can
see this by plotting the estimated regression line from our earlier scatter plot (Figure 1).
This is seen below in Figure 2.

Figure 2: The estimated regression line gives us a line of best fit for the data
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Figure 3: Residual Plot of the Age vs. Earnings regression. The residuals plot does not
give us reason to think the assumptions of the model are violated

3 Evaluating the Regression Model

3.1 Looking at the Estimated Errors

It is important at this point to remember that we are interested in the linear relationship
between X and Y specified by the linear model Yi = α+Xi ·β+ εi where our error terms εi
are distributed independently with mean 0 and finite variance. If any of these assumptions
on our error terms εi are violated, then our model is not a good fit for the data and we
cannot say that our β̂ is a good estimate of the true β. To make sure that these assumptions
are not being violated, it is important to look at the plot of our estimated residuals. Want
we want to look for is relationships between errors or evidence that the variance of the
residuals are not the same for all residuals (i.e the variance increases with age). We check
the residuals of our regression of age against earnings in Figure 3

Thankfully, upon looking at the resudials plot of our regression, we do not find evidence
that the assumptions of our model are violated.
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3.2 Goodness of Fit

Once we have made sure that the assumptions of our model are satisfied, we may be
interested in how well the model fits the data. Estimating the linear relationship between
X and Y may not be of much use if there is not a very tight relationship between X and
Y (i.e if the data points are not very close to the regression line). To do this, we generally
use the R and R2 coeffecients, which tell us about the strength of the relationship between
X and Y in our data.

The R correlation coeffecient is bounded between -1 and 1, and tells us both about the
strength and direction of the linear relationship between X and Y . A R coeffecient of -1
indicates a perfect negative relationship between X and Y , whereas a R coeffecient of 1
indicates a perfect positive relationship. A R coeffecient of 0 indicates no linear relationship
between X and Y . The R coeffecient is calcualted

R =

∑n
i=1(Xi − X̄)(Yi − Ȳi)

(n− 1)sXsY

where sX and sY are the sample sample deviation of X and Y , respectively. You may
notice at this point that the linear regression model is reminicent of the β̂ coeffecient and
indeed we can write β̂

β̂ = R
sY
SX

Showing this is an exercise left to the reader. The other goodness of fit statistic we are
interested in the time being is R2. As the name would suggest, for simple (univariate) linear
regression this is calculated by squaring the R coeffecient. For more advanced models, R2

is calcualted using the estimated resudials of the model, but we will get to that in time.
For now what is important to know si that the R2 coeffecient can be interpreted as the
fraction of the variance in the dependent variable Y that can be described bt the linear
model of the X variable specified. For example a R2 of 0.75 would mean that 75% of the
variance in Y can be explained by the linear model with X.

4 Linear Regression in Stata

As mentioned before, linear regression can now be done on computers. A popular software
in economics to do linear regression (and other, more advanded, statistical analysis) is
Stata. To run a linear regression of Y (dependent) against X (explanatory) in Stata simply
load your data set (for this example named ’data.dta’) into Stata using the command

use data.dta

We can then run a regression of Y against X using the command
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reg Y X

In the example below income is used to explain food expenditures

Figure 4: Sample regression output from Stata. In this case income is being used to explain
food expenditures

The coeffecients of the model (α̂ and β̂) are found in the lower table under the ”Coef.”
column. β̂ is the coeffecient associated with the explanatory variable, in this case income,
wheras α̂ is the coeffecient associated with the constant.

5 Practice Problem

1. Interpretation (Edition 4, Problem 2.6) A soda vendor at Louisiana State Univer-
sity football games observes that more sodas are sold the warmer the temperature
at game time is. Based on 32 home games covering five years, the vendor estimates
the relationship between soda sales and temperature to be ŷ = −240 + 8x where y =
number of sodas she sells and x = temperature in degrees Farenheit.

(a) Q: Interpret the slope and intercept. Do the estimates make sense?
A: The interecept is -240. This means that if there temperature is 0 degrees
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Farenheit, our model predicts that - 240 sodas would be sold. This is clearly a
nonsensical prediction and suggests our model is not a good fit for the data at
the low end of the temperature distribution.
The slope is 8. This means that, holding all else constant, we expect a one
degree increase in temperature to be associated with an 8 unit increase in sodas
sold. This prediction is in line with prior beliefs.

(b) Q: On a day when the temperature at game time is forecast to be 80 degrees
Farenheit,predict how many sodas the vendor will sell.
A: Using our estimated model ŷ = −240 + 8 ∗ 80 = 400. Thus we would expect
400 sodas to be sold.

(c) Q: Below what temperature are the predicted sales zero?
A: To do this, we want to find the x at which ŷ is 0, let’s call this x̃. Since ŷ is
increasing in x, if x is lower that x̃ we would expect predicted sales to be zero
(or more specifically negative, but we know this is impossible). To find x̃, set ŷ
equal to 0 in the estimated regression equation:

0 = −240 + 8x̃

240 = 8x̃

30 = x̃

Thus, when the temperature is below 30 degrees, the predicted sales are 0.

(d) Q: Sketch a graph of the estimated regression line
A: See below:
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Figure 5
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